Renewable and Sustainable Energy Reviews
Bioethanol from macroalgae: Prospects and challenges
aEnergy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560012, India.
bCentre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
*Corresponding author:
 Ramachandra T.V   emram.ces@courses.iisc.ac.in
Deepthi Hebbale , deepthih@iisc.ac.in
Abstract

Burgeoning dependence on fossil fuels for transport and industrial sectors has been posing challenges such as depletion of fossil fuel reserves, enhanced greenhouse gas (GHG) footprint, with the imminent changes in the climate, etc. This has necessitated an exploration of sustainable, eco-friendly and carbon neutral energy alternatives. Recent studies on biofuels indicate that algal biomass, particularly from marine macroalgae(seaweeds) have the potential to supplement oil fuel. Marine macroalgae are fast growing and carbohydrate rich biomass having advantage over other biofuel feedstock in terms of land dependence, freshwater requirements, not competing with food crops, which were the inherent drawback of the first- and second-generation feedstock. The present communication reviews the macroalgal feedstock availability, screening and selection of viable feedstock based on the biochemical composition, process involved, scope and opportunities in bioethanol production as well as technology interventions. The prospect of bioethanol production from algal feedstock of Central West Coast of India has been evaluated taking into account challenges (feedstock sustenance, technical feasibility, economic viability) in order to achieve energy sustainability. The green algae exhibited growth during all seasons and highest total carbohydrate was recorded from green seaweed Ulva lactuca (62.15 ±12.8%). Elemental (CHN) analyses of seaweed samples indicate 25.31–37.95% of carbon, 4.52–6.48% hydrogen and 1.88–4.36% Nitrogen. Highest carbon, hydrogen and nitrogen content were recorded respectively from G.pusillum (C: 37.95%), G. pusillum (H: 6.48%) and E.intestinalis (N: 4.36%). Green seaweeds are rich in cellulose content (>10%) compared to other seaweeds (2–10%). Higher cellulose content was estimated in U.lactuca (14.03 ± 0.14%), followed by E. intestinalis (12.10 ± 0.53%) and C.media (10.53± 0.17%). Cellulose is a glucan present in green seaweeds, which can easily be hydrolysed through enzyme and subsequently fermented to produce bioethanol. Lower sugar removal in acid hydrolysate neutralization process (Na2CO3) was recorded in U.lactuca (39.8%) and E.intestinalis (14.7%). Highest ethanol yield of 1.63 g and 0.49 g achieving 25.8% and 77.4% efficiency in SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation) process respectively was recorded for green alga E. intestinalis.


Keywords -Bioenergy Biofuel Enteromorpha intestinalis Macroalgae Seaweeds Ulva lactuca

 

TOP  »  NEXT
Citation :T.V. Ramachandra, Deepthi Hebbale, 2019, Bioethanol from macroalgae: Prospects and challenges, Available online 17 October 2019 1364-0321/© 2019 Elsevier Ltd. All rights reserved. https://doi.org/10.1016/j.rser.2019.109479 Received 24 February 2019; Received in revised form 23 September 2019; Accepted 8 October 2019
* Corresponding Author :
Dr. T.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India.
Tel : +91-80-2293 3099/2293 3503 [extn - 107],      Fax : 91-80-23601428 / 23600085 / 23600683 [CES-TVR]
E-mail : tvr@iisc.ac.in , cestvr@ces.iisc.ernet.in, energy.ces@iisc.ac.in,     Web : http://wgbis.ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/grass